metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di-μ-iodido-bis[iodido(triphenylphosphine-κP)platinum(II)]

Achintesh Narayan Biswas,^a Vivek Bagchi,^b Purak Das^a and Pinaki Bandyopadhyay^a*

^aDepartment of Chemistry, University of North Bengal, Siliguri 734 013, India, and ^bDepartment of Chemistry, Indian Institute of Technology, New Delhi 110 016, India Correspondence e-mail: pbchem@rediffmail.com

Received 16 October 2007; accepted 23 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.010 Å; R factor = 0.023; wR factor = 0.059; data-to-parameter ratio = 16.8.

Each Pt atom in the dimeric iodide-bridged title compound, $[Pt_2I_4(C_{18}H_{15}P)_2]$, is tetracoordinated by a triphenylphosphine P and three I atoms in an approximately square-planar geometry. The *trans* influence of triphenylphosphine is evident from the longer Pt-I bond length.

Related literature

For related literature, see: Black *et al.* (1969); Chatt (1951); Chatt & Venanzi (1955, 1957); Chatt *et al.* (1964); Jinchao *et al.* (2006).

Experimental

Crystal data

$M_r = 1422.32$
Monoclinic, P21/a
a = 16.036 (4) Å
<i>b</i> = 15.874 (4) Å
c = 16.882 (4) Å
$\beta = 117.980 \ (4)^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *T*_{min} = 0.048, *T*_{max} = 0.277 $V = 3794.8 (17) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 10.73 mm^{-1} T = 293 (2) K 0.41 \times 0.26 \times 0.12 mm

35551 measured reflections 6689 independent reflections 6163 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	397 parameters
$wR(F^2) = 0.059$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.85 \text{ e} \text{ Å}^{-3}$
6689 reflections	$\Delta \rho_{\rm min} = -0.70 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Pt1-P1	2.2391 (13)	Pt2-P2	2.2409 (13)
Pt1-I2	2.5910 (7)	Pt2-I4	2.5892 (7)
Pt1-I1	2.5967 (7)	Pt2-I3	2.5981 (7)
Pt1-I4	2.6600 (7)	Pt2-I2	2.6664 (7)
P1-Pt1-I2	96.20 (3)	P2-Pt2-I4	96.25 (4)
P1-Pt1-I1	90.90 (3)	P2-Pt2-I3	91.16 (4)
I2-Pt1-I4	83.500 (15)	I4-Pt2-I2	83.410 (15)
I1-Pt1-I4	89.342 (17)	I3-Pt2-I2	89.298 (18)

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Financial support (SR/S1/IC-08/2007) from DST, Government of India, is gratefully acknowledged. We thank CSIR (India) for the award of a fellowship (PD & VB) and UGC (New Delhi) for the Special Assistance Programme to our Department. We also thank the Department of Chemistry, IIT Delhi, for providing the X-ray crystallographic facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2435).

References

Black, M., Mais, R. H. B. & Owston, P. G. (1969). *Acta Cryst.* B25, 1760–1766. Bruker (1997). *SHELXTL*. Bruker AXS Inc. Madison, Wisconsin, USA. Bruker (1998). *SMART*. Version 5.054. Bruker AXS Inc. Madison, Wisconsin,

- USA. USA.
- Bruker (2000). SAINT. Version 6.02a. Bruker AXS Inc. Madison, Wisconsin, USA.
- Chatt, J. (1951). J. Chem. Soc. pp. 652-658.
- Chatt, J., Johnson, N. P. & Shaw, B. L. (1964). J. Chem. Soc. pp. 1662-1666.
- Chatt, J. & Venanzi, L. M. (1955). J. Chem. Soc. pp. 2787-2793.
- Chatt, J. & Venanzi, L. M. (1957). J. Chem. Soc. pp. 2445-2447.
- Jinchao, Z., Yuqiu, G., Xiaming, Z., Mengsu, Y. & Jingrong, C. (2006). Chin. Sci. Bull. 51, 911–917.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2007). E63, m2836 [doi:10.1107/S1600536807052488]

Di-*µ*-iodido-bis[iodido(triphenylphosphine-*кP*)platinum(II)]

A. N. Biswas, V. Bagchi, P. Das and P. Bandyopadhyay

Comment

The dimeric halogen bridged complexes of platinum(II) are very important in synthetic organometallic chemistry (Chatt, 1951 & Chatt and Venanzi, 1955). The main application of the halide bridged complexes is in reactions in which the bridged is cleaved to give monomeric complexes (Chatt and Venanzi, 1957 & Chatt *et al.*, 1964). Recently cytotoxicity of some dimeric iodo bridged platinum(II) complexes has been established (Jinchao *et al.*, 2006). Against this background we report here the crystal structure of (I).

The molecular structure of the title compound, (I), is shown in Fig. 1, with the atom numbering scheme. The packing arrangement of (I) is shown in Fig. 2. The platinum atom is tetracoordinated with a donor set of one triphenylphosphine P atom and three I atoms in an approximately squareplanar geometry. One of the three iodine atoms is a terminal I, and the other two are bridging I for each platinum atom. Selected bond lengths and bond angles are listed in Table 1. The Pt—I bond lengthes *trans* to the triphenylphosphine moieties are longer and this is supposed to be due to the *trans*-influence of the P atom of the triphenylphosphine moiety. On the other hand Pt—P distances are quite close to the reported values (Black *et al.*, 1969) indicating absence of definite correlation between Pt—P distances and the *trans* influence of the ligand in the *trans* position. This, in turn, is indicative of the fact that Pt(II)—P bonds are not simple sigma bonds, but are more complex and therefore affected by the *trans* ligands in a more complex way than Pt(II)—I bonds.

Experimental

The title compound (I) was synthesized by stirring a mixture of di- μ -chlorido-bis[η^3 -2-methylallylplatinum(II)], triphenylphosphine and iodine in chloroform medium. The pink compound was isolated by chromatographic technique. Crystals suitable for X-ray crystallography was obtained from a mixture of dichloromethane and hexane (1:5 ν/ν).

Refinement

H atoms were included at calculated positions as riding atoms with C–H set to 0.93 Å for aromatic H atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. The molecular arrangement of (I) in the *ac* plane. H atoms are omitted for clarity.

Di-μ-iodido-bis[iodido(triphenylphosphine-κ*P*)platinum(II)]

Crystal data	
$[Pt_2I_4(C_{18}H_{15}P)_2]$	$F_{000} = 2576$
$M_r = 1422.32$	$D_{\rm x} = 2.490 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6689 reflections
a = 16.036 (4) Å	$\theta = 1.4 - 25.0^{\circ}$
b = 15.874 (4) Å	$\mu = 10.73 \text{ mm}^{-1}$
c = 16.882 (4) Å	T = 293 (2) K
$\beta = 117.980 \ (4)^{\circ}$	Needle, pink
$V = 3794.8 (17) \text{ Å}^3$	$0.41 \times 0.26 \times 0.12 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	6689 independent reflections
Radiation source: fine-focus sealed tube	6163 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -19 \rightarrow 19$
$T_{\min} = 0.048, \ T_{\max} = 0.277$	$k = -18 \rightarrow 18$
35551 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.023$	H-atom parameters constrained
$wR(F^2) = 0.059$	$w = 1/[\sigma^2(F_o^2) + (0.0238P)^2 + 6.7173P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.09	$(\Delta/\sigma)_{\rm max} = 0.001$
6689 reflections	$\Delta \rho_{max} = 0.85 \text{ e } \text{\AA}^{-3}$

397 parameters

 $\Delta \rho_{min} = -0.70 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C7	0.4954 (3)	-0.0138 (3)	0.1966 (3)	0.0358 (11)
C25	-0.0345 (3)	-0.3163 (3)	0.1088 (3)	0.0401 (11)
C13	0.5214 (3)	0.0905 (3)	0.3493 (3)	0.0333 (10)
C19	-0.0385 (4)	-0.1714 (3)	0.2082 (4)	0.0520 (14)
C1	0.4272 (3)	0.1514 (3)	0.1632 (3)	0.0356 (11)
C2	0.3426 (4)	0.1903 (4)	0.1075 (4)	0.0501 (13)
H2	0.2872	0.1737	0.1080	0.060*
C14	0.5590 (4)	0.1701 (3)	0.3723 (3)	0.0452 (12)
H14	0.5408	0.2121	0.3290	0.054*
C18	0.5461 (4)	0.0302 (4)	0.4155 (4)	0.0522 (14)
H18	0.5188	-0.0231	0.4011	0.063*
C6	0.5078 (4)	0.1776 (4)	0.1598 (4)	0.0477 (13)
Н6	0.5653	0.1518	0.1967	0.057*
C31	0.0757 (4)	-0.3099 (4)	0.3057 (4)	0.0504 (14)
C8	0.4557 (4)	-0.0283 (3)	0.1055 (4)	0.0494 (13)
H8	0.4021	0.0015	0.0664	0.059*
C26	-0.0529 (5)	-0.2902 (4)	0.0234 (4)	0.0572 (15)
H26	-0.0233	-0.2425	0.0164	0.069*
C30	-0.0774 (4)	-0.3872 (3)	0.1179 (4)	0.0502 (13)
H30	-0.0658	-0.4050	0.1746	0.060*
C12	0.5733 (4)	-0.0612 (4)	0.2536 (4)	0.0609 (16)
H12	0.6006	-0.0531	0.3153	0.073*
C3	0.3409 (5)	0.2546 (4)	0.0508 (4)	0.0679 (18)
H3	0.2841	0.2811	0.0136	0.082*
C17	0.6110 (5)	0.0485 (4)	0.5030 (4)	0.0621 (16)
H17	0.6282	0.0074	0.5472	0.075*
C32	0.0074 (5)	-0.3298 (4)	0.3322 (4)	0.0621 (17)
H32	-0.0543	-0.3107	0.2984	0.075*
C36	0.1678 (5)	-0.3348 (4)	0.3594 (4)	0.0664 (17)
H36	0.2144	-0.3207	0.3438	0.080*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C16	0.6499 (4)	0.1270 (4)	0.5247 (4)	0.0576 (16)
H16	0.6939	0.1394	0.5835	0.069*
C15	0.6239 (4)	0.1871 (4)	0.4599 (4)	0.0586 (16)
H15	0.6505	0.2406	0.4751	0.070*
C5	0.5042 (5)	0.2406 (4)	0.1032 (4)	0.0585 (16)
Н5	0.5592	0.2572	0.1021	0.070*
C4	0.4216 (6)	0.2795 (4)	0.0487 (4)	0.0635 (18)
H4	0.4198	0.3224	0.0105	0.076*
C29	-0.1384 (4)	-0.4329 (4)	0.0426 (5)	0.0671 (18)
H29	-0.1669	-0.4815	0.0492	0.081*
C9	0.4946 (5)	-0.0863 (4)	0.0720 (5)	0.0632 (17)
Н9	0.4683	-0.0945	0.0104	0.076*
C20	-0.0143 (5)	-0.1257 (4)	0.2860 (5)	0.0679 (18)
H20	0.0429	-0.1359	0.3368	0.081*
C27	-0.1150 (5)	-0.3354 (5)	-0.0509 (4)	0.0715 (19)
H27	-0.1286	-0.3171	-0.1080	0.086*
C28	-0.1567 (5)	-0.4069 (4)	-0.0409 (4)	0.0685 (18)
H28	-0.1976	-0.4377	-0.0911	0.082*
C10	0.5714 (5)	-0.1317 (4)	0.1288 (6)	0.074 (2)
H10	0.5976	-0.1711	0.1061	0.088*
C21	-0.0755 (7)	-0.0649 (4)	0.2878 (6)	0.082 (2)
H21	-0.0583	-0.0334	0.3397	0.099*
C22	-0.1594 (7)	-0.0509 (5)	0.2153 (8)	0.104 (3)
H22	-0.2011	-0.0115	0.2178	0.125*
C33	0.0311 (6)	-0.3775 (5)	0.4082 (5)	0.081 (2)
H33	-0.0149	-0.3922	0.4245	0.098*
C34	0.1221 (7)	-0.4031 (5)	0.4593 (5)	0.094 (3)
H34	0.1381	-0.4359	0.5100	0.113*
C35	0.1905 (6)	-0.3803 (6)	0.4359 (5)	0.098 (3)
H35	0.2529	-0.3960	0.4724	0.118*
C11	0.6099 (5)	-0.1195 (5)	0.2191 (5)	0.082 (2)
H11	0.6618	-0.1514	0.2577	0.099*
C24	-0.1237 (5)	-0.1534 (4)	0.1342 (5)	0.075 (2)
H24	-0.1413	-0.1817	0.0804	0.090*
C23	-0.1826 (6)	-0.0936 (6)	0.1400 (7)	0.108 (3)
H23	-0.2402	-0.0826	0.0899	0.130*
Pt1	0.303078 (12)	0.014176 (11)	0.230490 (12)	0.03130 (6)
Pt2	0.167402 (13)	-0.199608 (12)	0.193463 (14)	0.03806 (6)
12	0.32173 (2)	-0.140087 (19)	0.19114 (2)	0.04119 (9)
I4	0.14558 (2)	-0.04414 (2)	0.22637 (3)	0.04403 (9)
I1	0.27457 (3)	0.15825 (2)	0.28661 (3)	0.05148 (10)
13	0.20461 (3)	-0.34792 (2)	0.15292 (4)	0.07113 (14)
P1	0.43647 (8)	0.06234 (7)	0.23499 (8)	0.0307 (2)
P2	0.04244 (9)	-0.25019 (8)	0.20388 (9)	0.0402 (3)
(1)				
	u pur uniciers (A)			

 U^{33} U^{12} U^{13} U^{11} U^{22}

 U^{23}

C7	0.036 (3)	0.030(2)	0.047 (3)	-0.003 (2)	0.024 (2)	0.001 (2)
C25	0.036 (3)	0.038 (3)	0.046 (3)	-0.006 (2)	0.019 (2)	-0.006 (2)
C13	0.025 (2)	0.040 (3)	0.035 (2)	0.0006 (19)	0.014 (2)	0.001 (2)
C19	0.052 (3)	0.041 (3)	0.077 (4)	-0.015 (3)	0.042 (3)	-0.013 (3)
C1	0.040 (3)	0.032 (2)	0.033 (2)	-0.001 (2)	0.016 (2)	0.001 (2)
C2	0.047 (3)	0.050 (3)	0.049 (3)	0.003 (3)	0.020 (3)	0.007 (3)
C14	0.047 (3)	0.044 (3)	0.040 (3)	-0.006 (2)	0.017 (2)	0.002 (2)
C18	0.056 (4)	0.048 (3)	0.046 (3)	-0.004 (3)	0.019 (3)	0.008 (3)
C6	0.052 (3)	0.052 (3)	0.042 (3)	-0.012 (3)	0.024 (3)	0.002 (2)
C31	0.053 (3)	0.048 (3)	0.049 (3)	-0.020 (3)	0.023 (3)	-0.009 (3)
C8	0.057 (3)	0.046 (3)	0.052 (3)	0.002 (3)	0.031 (3)	0.000 (3)
C26	0.071 (4)	0.051 (3)	0.058 (4)	-0.009 (3)	0.037 (3)	0.000 (3)
C30	0.052 (3)	0.044 (3)	0.054 (3)	-0.012 (3)	0.024 (3)	-0.003 (3)
C12	0.049 (3)	0.068 (4)	0.058 (4)	0.014 (3)	0.018 (3)	-0.009 (3)
C3	0.078 (5)	0.057 (4)	0.051 (4)	0.018 (3)	0.014 (3)	0.011 (3)
C17	0.062 (4)	0.073 (4)	0.044 (3)	0.010 (3)	0.019 (3)	0.016 (3)
C32	0.065 (4)	0.072 (4)	0.054 (4)	-0.032 (3)	0.032 (3)	-0.013 (3)
C36	0.056 (4)	0.077 (5)	0.056 (4)	-0.012 (3)	0.018 (3)	-0.005 (3)
C16	0.044 (3)	0.085 (5)	0.036 (3)	0.000 (3)	0.012 (3)	-0.006 (3)
C15	0.063 (4)	0.061 (4)	0.048 (3)	-0.021 (3)	0.023 (3)	-0.015 (3)
C5	0.072 (4)	0.060 (4)	0.047 (3)	-0.023 (3)	0.032 (3)	-0.003 (3)
C4	0.105 (6)	0.043 (3)	0.046 (3)	-0.015 (4)	0.039 (4)	0.001 (3)
C29	0.058 (4)	0.052 (4)	0.079 (5)	-0.017 (3)	0.021 (4)	-0.012 (3)
C9	0.085 (5)	0.054 (4)	0.062 (4)	0.000 (3)	0.044 (4)	-0.008 (3)
C20	0.078 (5)	0.060 (4)	0.091 (5)	-0.024 (3)	0.061 (4)	-0.019 (4)
C27	0.081 (5)	0.089 (5)	0.044 (3)	-0.003 (4)	0.029 (3)	-0.008 (3)
C28	0.068 (4)	0.069 (4)	0.055 (4)	-0.010 (4)	0.018 (3)	-0.018 (3)
C10	0.077 (5)	0.060 (4)	0.106 (6)	0.009 (4)	0.061 (5)	-0.015 (4)
C21	0.109 (7)	0.056 (4)	0.130 (7)	-0.027 (4)	0.097 (6)	-0.033 (4)
C22	0.100(7)	0.065 (5)	0.183 (11)	0.005 (5)	0.095 (8)	-0.016 (6)
C33	0.114 (7)	0.080 (5)	0.059 (4)	-0.052 (5)	0.049 (5)	-0.023 (4)
C34	0.118 (7)	0.090 (6)	0.047 (4)	-0.039 (5)	0.016 (5)	-0.003 (4)
C35	0.090 (6)	0.113 (7)	0.059 (5)	-0.013 (5)	0.006 (4)	0.005 (5)
C11	0.073 (5)	0.080 (5)	0.083 (5)	0.038 (4)	0.029 (4)	-0.006 (4)
C24	0.064 (4)	0.061 (4)	0.094 (5)	0.015 (3)	0.032 (4)	-0.009 (4)
C23	0.087 (6)	0.084 (6)	0.144 (9)	0.029 (5)	0.047 (6)	-0.012 (6)
Pt1	0.02656 (10)	0.02947 (10)	0.03885 (11)	-0.00243 (7)	0.01617 (8)	-0.00024 (7)
Pt2	0.03339 (11)	0.03118 (11)	0.05433 (13)	-0.00463 (8)	0.02450 (10)	-0.00138 (8)
I2	0.03562 (18)	0.03096 (16)	0.0641 (2)	-0.00209 (13)	0.02933 (17)	-0.00143 (14)
I4	0.03608 (18)	0.03389 (17)	0.0713 (2)	-0.00430 (13)	0.03281 (17)	-0.00441 (15)
I1	0.0483 (2)	0.03940 (19)	0.0768 (3)	-0.00636 (15)	0.0377 (2)	-0.01506 (17)
13	0.0653 (3)	0.0387 (2)	0.1323 (4)	-0.00821 (18)	0.0654 (3)	-0.0169 (2)
P1	0.0267 (6)	0.0299 (6)	0.0356 (6)	-0.0025 (5)	0.0147 (5)	0.0001 (5)
P2	0.0378 (7)	0.0372 (7)	0.0510 (8)	-0.0108 (6)	0.0254 (6)	-0.0056 (6)
Geometric po	arameters (Å, °)					
С7—С8		1.380 (7)	C36—	-C35	1.37	2 (10)
C7—C12		1.388 (8)	C36—	-H36	0.93	00

C7—P1	1.829 (5)	C16—C15	1.361 (9)
C25—C30	1.365 (7)	С16—Н16	0.9300
C25—C26	1.391 (8)	C15—H15	0.9300
C25—P2	1.828 (5)	C5—C4	1.355 (9)
C13—C14	1.376 (7)	С5—Н5	0.9300
C13—C18	1.381 (7)	C4—H4	0.9300
C13—P1	1.820 (5)	C29—C28	1.361 (9)
C19—C24	1.382 (9)	С29—Н29	0.9300
C19—C20	1.386 (8)	C9—C10	1.359 (9)
C19—P2	1.828 (6)	С9—Н9	0.9300
C1—C2	1.382 (7)	C20—C21	1.387 (10)
C1—C6	1.383 (7)	C20—H20	0.9300
C1—P1	1.823 (5)	C27—C28	1.367 (10)
C2—C3	1.391 (8)	С27—Н27	0.9300
С2—Н2	0.9300	C28—H28	0.9300
C14—C15	1.379 (8)	C10—C11	1.363 (10)
C14—H14	0.9300	C10—H10	0.9300
C18—C17	1.382 (8)	C21—C22	1.347 (12)
C18—H18	0.9300	C21—H21	0.9300
C6—C5	1.367 (8)	C22—C23	1.329 (13)
С6—Н6	0.9300	C22—H22	0.9300
C31—C36	1.378 (9)	C33—C34	1.363 (12)
C31—C32	1.400 (8)	С33—Н33	0.9300
C31—P2	1.811 (6)	C34—C35	1.376 (12)
C8—C9	1.374 (8)	C34—H34	0.9300
С8—Н8	0.9300	С35—Н35	0.9300
C26—C27	1.381 (9)	C11—H11	0.9300
C26—H26	0.9300	C24—C23	1.375 (10)
C30—C29	1.391 (8)	C24—H24	0.9300
С30—Н30	0.9300	С23—Н23	0.9300
C12—C11	1.365 (8)	Pt1—P1	2.2391 (13)
C12—H12	0.9300	Pt1—I2	2.5910 (7)
C3—C4	1.368 (10)	Pt1—I1	2.5967 (7)
С3—Н3	0.9300	Pt1—I4	2.6600 (7)
C17—C16	1.364 (9)	Pt2—P2	2.2409 (13)
С17—Н17	0.9300	Pt2—I4	2.5892 (7)
C32—C33	1.382 (9)	Pt2—I3	2.5981 (7)
С32—Н32	0.9300	Pt2—I2	2.6664 (7)
C8—C7—C12	118.5 (5)	С28—С29—Н29	119.8
C8—C7—P1	117.4 (4)	С30—С29—Н29	119.8
C12—C7—P1	124.0 (4)	C10—C9—C8	120.1 (6)
C30—C25—C26	119.2 (5)	С10—С9—Н9	119.9
C30—C25—P2	122.9 (4)	C8—C9—H9	119.9
C26—C25—P2	117.8 (4)	C19—C20—C21	119.9 (8)
C14—C13—C18	119.2 (5)	C19—C20—H20	120.0
C14—C13—P1	122.4 (4)	C21—C20—H20	120.0
C18—C13—P1	118.4 (4)	C28—C27—C26	120.3 (6)
C24—C19—C20	117.8 (6)	C28—C27—H27	119.8
C24—C19—P2	121.7 (5)	C26—C27—H27	119.8

C20—C19—P2	120.5 (5)	C29—C28—C27	119.9 (6)
C2—C1—C6	118.5 (5)	С29—С28—Н28	120.0
C2—C1—P1	123.1 (4)	С27—С28—Н28	120.0
C6—C1—P1	118.3 (4)	C9—C10—C11	119.9 (6)
C1—C2—C3	119.4 (6)	C9—C10—H10	120.1
C1—C2—H2	120.3	C11-C10-H10	120.1
С3—С2—Н2	120.3	C22—C21—C20	120.6 (8)
C13—C14—C15	119.6 (5)	C22—C21—H21	119.7
C13—C14—H14	120.2	C20-C21-H21	119.7
C15-C14-H14	120.2	C23—C22—C21	119.8 (8)
C13—C18—C17	120.3 (6)	C23—C22—H22	120.1
C13-C18-H18	119.8	C21—C22—H22	120.1
C17—C18—H18	119.8	C34—C33—C32	119.8 (7)
C5—C6—C1	120.9 (6)	С34—С33—Н33	120.1
С5—С6—Н6	119.5	С32—С33—Н33	120.1
С1—С6—Н6	119.5	C33—C34—C35	120.1 (8)
C36—C31—C32	118.9 (6)	С33—С34—Н34	120.0
C36—C31—P2	121.4 (5)	С35—С34—Н34	120.0
C32—C31—P2	119.6 (5)	C36—C35—C34	120.9 (8)
C9—C8—C7	120.6 (6)	С36—С35—Н35	119.6
С9—С8—Н8	119.7	С34—С35—Н35	119.6
С7—С8—Н8	119.7	C10-C11-C12	120.9 (6)
C27—C26—C25	119.9 (6)	C10-C11-H11	119.5
С27—С26—Н26	120.1	C12—C11—H11	119.5
С25—С26—Н26	120.1	C23—C24—C19	119.9 (8)
C25—C30—C29	120.2 (6)	C23—C24—H24	120.0
С25—С30—Н30	119.9	C19—C24—H24	120.0
С29—С30—Н30	119.9	C22—C23—C24	121.8 (9)
C11—C12—C7	120.0 (6)	С22—С23—Н23	119.1
C11—C12—H12	120.0	C24—C23—H23	119.1
C7—C12—H12	120.0	P1—Pt1—I2	96.20 (3)
C4—C3—C2	121.1 (6)	P1—Pt1—I1	90.90 (3)
С4—С3—Н3	119.5	I2—Pt1—I1	170.796 (13)
С2—С3—Н3	119.5	P1—Pt1—I4	179.44 (3)
C16—C17—C18	120.0 (6)	I2—Pt1—I4	83.500 (15)
C16—C17—H17	120.0	I1—Pt1—I4	89.342 (17)
C18—C17—H17	120.0	P2—Pt2—I4	96.25 (4)
C33—C32—C31	120.3 (7)	P2—Pt2—I3	91.16 (4)
С33—С32—Н32	119.9	I4—Pt2—I3	172.337 (14)
С31—С32—Н32	119.9	P2—Pt2—I2	176.76 (4)
C35—C36—C31	119.9 (7)	I4—Pt2—I2	83.410 (15)
С35—С36—Н36	120.0	I3—Pt2—I2	89.298 (18)
C31—C36—H36	120.0	Pt1—I2—Pt2	96.405 (15)
C15—C16—C17	119.7 (5)	Pt2—I4—Pt1	96.605 (16)
C15—C16—H16	120.2	C13—P1—C1	107.6 (2)
C17—C16—H16	120.2	C13—P1—C7	106.5 (2)
C16—C15—C14	121.2 (6)	C1—P1—C7	99.8 (2)
C16—C15—H15	119.4	C13—P1—Pt1	110.34 (15)
C14—C15—H15	119.4	C1—P1—Pt1	117.65 (16)

C4—C5—C6	121.0 (6)	C7—P1—Pt1	113.98 (15)
С4—С5—Н5	119.5	C31—P2—C25	108.1 (2)
С6—С5—Н5	119.5	C31—P2—C19	102.6 (3)
C5—C4—C3	119.1 (6)	C25—P2—C19	103.2 (3)
С5—С4—Н4	120.5	C31—P2—Pt2	112.71 (19)
C3—C4—H4	120.5	C25—P2—Pt2	113.36 (17)
C28—C29—C30	120.3 (6)	C19—P2—Pt2	115.85 (17)
C6—C1—C2—C3	-0.6 (8)	P2—Pt2—I4—Pt1	174.64 (4)
P1—C1—C2—C3	-176.1 (4)	I2—Pt2—I4—Pt1	-2.114 (12)
C18—C13—C14—C15	3.1 (8)	I2—Pt1—I4—Pt2	2.176 (13)
P1-C13-C14-C15	-179.3 (4)	I1—Pt1—I4—Pt2	-172.027 (14)
C14—C13—C18—C17	-2.9 (8)	C14—C13—P1—C1	7.3 (5)
P1-C13-C18-C17	179.4 (5)	C18—C13—P1—C1	-175.1 (4)
C2—C1—C6—C5	0.3 (8)	C14—C13—P1—C7	113.6 (4)
P1-C1-C6-C5	176.0 (4)	C18—C13—P1—C7	-68.8 (4)
C12—C7—C8—C9	-2.2 (8)	C14—C13—P1—Pt1	-122.3 (4)
P1	-178.2 (5)	C18—C13—P1—Pt1	55.4 (4)
C30—C25—C26—C27	0.9 (9)	C2-C1-P1-C13	-124.7 (4)
P2-C25-C26-C27	-176.1 (5)	C6-C1-P1-C13	59.8 (4)
C26—C25—C30—C29	0.3 (9)	C2—C1—P1—C7	124.4 (5)
P2-C25-C30-C29	177.2 (5)	C6—C1—P1—C7	-51.1 (4)
C8—C7—C12—C11	1.1 (9)	C2—C1—P1—Pt1	0.6 (5)
P1—C7—C12—C11	176.8 (6)	C6—C1—P1—Pt1	-174.9 (3)
C1—C2—C3—C4	0.5 (9)	C8—C7—P1—C13	-163.5 (4)
C13—C18—C17—C16	1.1 (9)	C12—C7—P1—C13	20.7 (5)
C36—C31—C32—C33	-3.6 (9)	C8—C7—P1—C1	-51.8 (4)
P2-C31-C32-C33	178.0 (5)	C12—C7—P1—C1	132.5 (5)
C32—C31—C36—C35	1.9 (10)	C8—C7—P1—Pt1	74.6 (4)
P2-C31-C36-C35	-179.7 (6)	C12—C7—P1—Pt1	-101.2 (5)
C18—C17—C16—C15	0.4 (10)	I2—Pt1—P1—C13	-111.86 (17)
C17—C16—C15—C14	-0.2 (10)	I1—Pt1—P1—C13	62.29 (17)
C13—C14—C15—C16	-1.6 (9)	I2—Pt1—P1—C1	124.25 (18)
C1—C6—C5—C4	0.0 (9)	I1—Pt1—P1—C1	-61.61 (18)
C6—C5—C4—C3	-0.1 (9)	I2—Pt1—P1—C7	7.88 (18)
C2—C3—C4—C5	-0.1 (9)	I1—Pt1—P1—C7	-177.97 (18)
C25—C30—C29—C28	-0.7 (10)	C36—C31—P2—C25	113.6 (5)
C7—C8—C9—C10	1.8 (9)	C32—C31—P2—C25	-68.0 (5)
C24—C19—C20—C21	0.7 (9)	C36—C31—P2—C19	-137.8 (5)
P2-C19-C20-C21	178.6 (5)	C32—C31—P2—C19	40.6 (5)
C25—C26—C27—C28	-1.7 (10)	C36—C31—P2—Pt2	-12.5 (6)
C30—C29—C28—C27	-0.1 (11)	C32—C31—P2—Pt2	165.9 (4)
C26—C27—C28—C29	1.3 (11)	C30—C25—P2—C31	16.1 (5)
C8—C9—C10—C11	-0.1 (11)	C26—C25—P2—C31	-167.0 (4)
C19—C20—C21—C22	1.5 (10)	C30—C25—P2—C19	-92.1 (5)
C20—C21—C22—C23	-2.5 (13)	C26—C25—P2—C19	84.8 (5)
C31—C32—C33—C34	2.2 (10)	C30-C25-P2-Pt2	141.8 (4)
C32—C33—C34—C35	0.9 (12)	C26-C25-P2-Pt2	-41.3 (5)
C31—C36—C35—C34	1.2 (12)	C24—C19—P2—C31	-134.2 (5)
C33—C34—C35—C36	-2.6 (13)	C20—C19—P2—C31	48.0 (5)

C9-C10-C11-C12	-1.0 (12)	C24—C19—P2—C25	-21.9 (6)
C7—C12—C11—C10	0.5 (12)	C20—C19—P2—C25	160.3 (5)
C20—C19—C24—C23	-1.9 (11)	C24—C19—P2—Pt2	102.6 (5)
P2-C19-C24-C23	-179.8 (7)	C20—C19—P2—Pt2	-75.2 (5)
C21—C22—C23—C24	1.3 (15)	I4—Pt2—P2—C31	-106.6 (2)
C19—C24—C23—C22	1.0 (14)	I3—Pt2—P2—C31	75.3 (2)
P1—Pt1—I2—Pt2	177.41 (3)	I4—Pt2—P2—C25	130.19 (19)
I4—Pt1—I2—Pt2	-2.112 (12)	I3—Pt2—P2—C25	-47.87 (19)
I4—Pt2—I2—Pt1	2.170 (13)	I4—Pt2—P2—C19	11.1 (2)
I3—Pt2—I2—Pt1	179.809 (16)	I3—Pt2—P2—C19	-166.9 (2)

Fig. 1

Fig. 2